Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 32(23): 6696-6709, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36799015

RESUMEN

The spread of nonindigenous species by shipping is a large and growing global problem that harms coastal ecosystems and economies and may blur coastal biogeographical patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding with dissimilarity regression to test the hypothesis that ship-borne species spread homogenizes port communities. We first collected and metabarcoded water samples from ports in Europe, Asia, Australia and the Americas. We then calculated community dissimilarities between port pairs and tested for effects of environmental dissimilarity, biogeographical region and four alternative measures of ship-borne species transport risk. We predicted that higher shipping between ports would decrease community dissimilarity, that the effect of shipping would be small compared to that of environment dissimilarity and shared biogeography, and that more complex shipping risk metrics (which account for ballast water and stepping-stone spread) would perform better. Consistent with our hypotheses, community dissimilarities increased significantly with environmental dissimilarity and, to a lesser extent, decreased with ship-borne species transport risks, particularly if the ports had similar environments and stepping-stone risks were considered. Unexpectedly, we found no clear effect of shared biogeography, and that risk metrics incorporating estimates of ballast discharge did not offer more explanatory power than simpler traffic-based risks. Overall, we found that shipping homogenizes eukaryotic communities between ports in predictable ways, which could inform improvements in invasive species policy and management. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity regression for disentangling the drivers of large-scale biodiversity patterns. We conclude by outlining logistical considerations and recommendations for future studies using this approach.


Asunto(s)
ADN Ambiental , Ecosistema , ADN Ambiental/genética , Navíos , Biodiversidad , Agua , Monitoreo del Ambiente , Código de Barras del ADN Taxonómico
2.
PLoS One ; 16(6): e0252810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34153054

RESUMEN

Conservation aquaculture is becoming an important tool to support the recovery of declining marine species and meet human needs. However, this tool comes with risks as well as rewards, which must be assessed to guide aquaculture activities and recovery efforts. Olympia oysters (Ostrea lurida) provide key ecosystem functions and services along the west coast of North America, but populations have declined to the point of local extinction in some estuaries. Here, we present a species-level, range-wide approach to strategically planning the use of aquaculture to promote recovery of Olympia oysters. We identified 12 benefits of culturing Olympia oysters, including identifying climate-resilient phenotypes that add diversity to growers' portfolios. We also identified 11 key risks, including potential negative ecological and genetic consequences associated with the transfer of hatchery-raised oysters into wild populations. Informed by these trade-offs, we identified ten priority estuaries where aquaculture is most likely to benefit Olympia oyster recovery. The two highest scoring estuaries have isolated populations with extreme recruitment limitation-issues that can be addressed via aquaculture if hatchery capacity is expanded in priority areas. By integrating social criteria, we evaluated which project types would likely meet the goals of local stakeholders in each estuary. Community restoration was most broadly suited to the priority areas, with limited commercial aquaculture and no current community harvest of the species, although this is a future stakeholder goal. The framework we developed to evaluate aquaculture as a tool to support species recovery is transferable to other systems and species globally; we provide a guide to prioritizing local knowledge and developing recommendations for implementation by using transparent criteria. Our collaborative process engaging diverse stakeholders including managers, scientists, Indigenous Tribal representatives, and shellfish growers can be used elsewhere to seek win-win opportunities to expand conservation aquaculture where benefits are maximized for both people and imperiled species.


Asunto(s)
Acuicultura/métodos , Conservación de los Recursos Naturales/métodos , Ecosistema , Especies en Peligro de Extinción , Ostrea/fisiología , Animales , Colombia Británica , California , Estuarios , Geografía , Humanos , México , Oregon , Reproducibilidad de los Resultados , Factores de Riesgo
3.
Toxics ; 9(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801358

RESUMEN

Terrestrial land use activities present cross-ecosystem threats to riverine and marine species and processes. Specifically, pesticide runoff can disrupt hormonal, reproductive, and developmental processes in aquatic organisms, yet non-point source pollution is difficult to trace and quantify. In Oregon, U.S.A., state and federal forestry pesticide regulations, designed to meet regulatory water quality requirements, differ in buffer size and pesticide applications. We deployed passive water samplers and collected riverine and estuarine bivalves Margaritifera falcata, Mya arenaria, and Crassostrea gigas from Oregon Coast watersheds to examine forestry-specific pesticide contamination. We used non-metric multidimensional scaling and regression to relate concentrations and types of pesticide contamination across watersheds to ownership and management metrics. In bivalve samples collected from eight coastal watersheds, we measured twelve unique pesticides (two herbicides; three fungicides; and seven insecticides). Pesticides were detected in 38% of bivalve samples; and frequency and maximum concentrations varied by season, species, and watershed with indaziflam (herbicide) the only current-use forestry pesticide detected. Using passive water samplers, we measured four current-use herbicides corresponding with planned herbicide applications; hexazinone and atrazine were most frequently detected. Details about types and levels of exposure provide insight into effectiveness of current forest management practices in controlling transport of forest-use pesticides.

4.
J Morphol ; 189(2): 99-120, 1986 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29940709

RESUMEN

The epidermis of the doliolaria larva of the Florometra serratissima is differentiated into distinct structures including an apical organ, adhesive pit, ganglion, ciliary bands, nerve plexus, and vestibular invagination. All these structures possess unique cell-types, suggesting that they are functionally specialized in the larva, except the vestibular invagination that becomes the postmetamorphic stomodeum. The epidermis also contains yellow cells, amoeboid-like cells, and secretory cells. The enteric sac, hydrocoel, axocoel, and somatocoels have differentiated but are probably not functional in the doliolaria stage. Mesenchymal cells, around the enteric sac and coeloms, appear to be actively secreting the endoskeleton and connective tissue fibers. The nervous system is composed of a nerve plexus, ganglion, and sensory receptor cells in the apical organ. The apical organ is a larval specialization of the anterior end; the ganglion is located in the base of the epidermis at the anterior dorsal end of the larva. The nerve plexus underlies most of the epidermis, although it is more prominent in the anterior region. Here, processes from sensory receptor cells of the apical organ, as well as those from nerve cells, contribute to the plexus. These processes contain one or a combination of organelles including vesicles, vacuoles, microtubules, and mitochondria. The configuration of glyoxylic acid-induced fluorescence, revealing catecholamine activity, correlates to the apical organ, nerve cells, and nerve plexus. Morphological evidence suggests that the nervous system may function in initiation and control of settlement, attachment, and metamorphosis. The crinoid larval nervous system is discussed and compared to that found in other larval echinoderms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...